Synchronous Optical Network - définition. Qu'est-ce que Synchronous Optical Network
Diclib.com
Dictionnaire ChatGPT
Entrez un mot ou une phrase dans n'importe quelle langue 👆
Langue:

Traduction et analyse de mots par intelligence artificielle ChatGPT

Sur cette page, vous pouvez obtenir une analyse détaillée d'un mot ou d'une phrase, réalisée à l'aide de la meilleure technologie d'intelligence artificielle à ce jour:

  • comment le mot est utilisé
  • fréquence d'utilisation
  • il est utilisé plus souvent dans le discours oral ou écrit
  • options de traduction de mots
  • exemples d'utilisation (plusieurs phrases avec traduction)
  • étymologie

Qu'est-ce (qui) est Synchronous Optical Network - définition

STANDARDIZED PROTOCOL THAT TRANSFERS MULTIPLE DIGITAL BIT STREAMS SYNCHRONOUSLY OVER OPTICAL FIBER
Synchronous Digital Hierarchy; Synchronous digital hierarchy; Synchronous Optical NETwork; SONET; Synchronous Optical Networking; Synchronous Optical networking; Synchronous optical Networking; Synchronous optical network; Synchronous Optical Network; SONET/SDH; SONET ring; Section overhead; Virtual container; SDH/SONET; G.707; SOnet; Optical Carrier; STM-256; Optical carrier; Synchronous Digital Hierarchy/SONET; Blsr; STM-16; STS-192; STM-64; STS-768
  • Alcatel]] STM-16 SDH [[add-drop multiplexer]]s
  • An STM-1 frame. The first nine columns contain the overhead and the pointers. For the sake of simplicity, the frame is shown as a rectangular structure of 270 columns and nine rows but the protocol does not transmit the bytes in this order.
  • For the sake of simplicity, the frame is shown as a rectangular structure of 270 columns and nine rows. The first three rows and nine columns contain regenerator section overhead (RSOH) and the last five rows and nine columns contain multiplex section overhead (MSOH). The fourth row from the top contains pointers.

Synchronous Optical NETwork         
<networking> (SONET) A broadband networking standard based on point-to-point optical fibre networks. SONET will provide a high-bandwidth "pipe" to support ATM-based services. The SONET standard will establish a digital {hierarchical network} with a consistent worldwide transport scheme. SONET has been designed to take advantage of fibre, in contrast to the plain old telephone system which was designed for copper wires. SONET carries circuit-switched data in frames at speeds in multiples of 51.84 megabits per second (Mbps) up to 48 * 51.84 Mbps = 2.488 gigabits per second. Since SONET uses multiple channels to transmit data, each SONET frame can be considered to be a two-dimensional table of bytes that is 9 rows high and 90 columns deep. For every OC-n level, SONET can transmit n number of frames at a given time. Groups of frames are called superframes. SONET is the American version of SDH. [Wulf Losee; Corporate Computing 8.92; STACKS; LAN Magazine 10.93]. (1994-11-30)
Synchronous optical networking         
Synchronous optical networking (SONET) and synchronous digital hierarchy (SDH) are standardized protocols that transfer multiple digital bit streams synchronously over optical fiber using lasers or highly coherent light from light-emitting diodes (LEDs). At low transmission rates data can also be transferred via an electrical interface.
SONET         

Wikipédia

Synchronous optical networking

Synchronous Optical Networking (SONET) and Synchronous Digital Hierarchy (SDH) are standardized protocols that transfer multiple digital bit streams synchronously over optical fiber using lasers or highly coherent light from light-emitting diodes (LEDs). At low transmission rates data can also be transferred via an electrical interface. The method was developed to replace the plesiochronous digital hierarchy (PDH) system for transporting large amounts of telephone calls and data traffic over the same fiber without the problems of synchronization.

SONET and SDH, which are essentially the same, were originally designed to transport circuit mode communications (e.g., DS1, DS3) from a variety of different sources, but they were primarily designed to support real-time, uncompressed, circuit-switched voice encoded in PCM format. The primary difficulty in doing this prior to SONET/SDH was that the synchronization sources of these various circuits were different. This meant that each circuit was actually operating at a slightly different rate and with different phase. SONET/SDH allowed for the simultaneous transport of many different circuits of differing origin within a single framing protocol. SONET/SDH is not a complete communications protocol in itself, but a transport protocol (not a 'transport' in the OSI Model sense).

Due to SONET/SDH's essential protocol neutrality and transport-oriented features, SONET/SDH was the obvious choice for transporting the fixed length Asynchronous Transfer Mode (ATM) frames also known as cells. It quickly evolved mapping structures and concatenated payload containers to transport ATM connections. In other words, for ATM (and eventually other protocols such as Ethernet), the internal complex structure previously used to transport circuit-oriented connections was removed and replaced with a large and concatenated frame (such as STS-3c) into which ATM cells, IP packets, or Ethernet frames are placed.

Both SDH and SONET are widely used today: SONET in the United States and Canada, and SDH in the rest of the world. Although the SONET standards were developed before SDH, it is considered a variation of SDH because of SDH's greater worldwide market penetration. SONET is subdivided into four sublayers with some factor such as the path, line, section and physical layer.

The SDH standard was originally defined by the European Telecommunications Standards Institute (ETSI), and is formalised as International Telecommunication Union (ITU) standards G.707, G.783, G.784, and G.803. The SONET standard was defined by Telcordia and American National Standards Institute (ANSI) standard T1.105. which define the set of transmission formats and transmission rates in the range above 51.840 Mbit/s.